Characterization of Insertable and Removable Pixels for Digital Convex Sets

Lama Tarsissi,
David Coeurjolly, Yukiko Kenmochi, Pascal Romon and Jean-Pierre Borel

> Journées de Géométrie Discrète et Morphologie Mathématique $$
\text { Nancy, 16-03-2021 }
$$

Université de Limoges

When we talk about inflation or deflation!!!

When we talk about inflation or deflation!!!

When we talk about inflation or deflation!!!

When we talk about inflation or deflation!!!

When we talk about inflation or deflation!!!

When we talk about inflation or deflation!!!

When we talk about inflation or deflation!!!

When we talk about inflation or deflation!!!

Outlines

(1) Digital convex Sets in Combinatorics on Words point of view
(2) Characterizations for removable pixels by preserving the digital convexity
(0) Characterizations for insertable pixels by preserving the digital convexity
(1) The utility of Combinatorics on words for the inflating process

Digital convexity-DC

Convexity

In \mathbb{R}^{2}, a subset R is said to be convex if for any pair of points $x, y \in R$, every point on the straight line segment joining x and y is also within R.

Digital convexity-DC

Convexity

In \mathbb{R}^{2}, a subset R is said to be convex if for any pair of points $x, y \in R$, every point on the straight line segment joining x and y is also within R.
(Not directly applicable to subsets in \mathbb{Z}^{2})

Digital convexity-DC

Convexity

In \mathbb{R}^{2}, a subset R is said to be convex if for any pair of points $x, y \in R$, every point on the straight line segment joining x and y is also within R.
(Not directly applicable to subsets in \mathbb{Z}^{2})
There are several definitions for the digital convexity given by (Minsky, Kim, Eckhardt, Hubler....)

Digital convexity-DC

Convexity

In \mathbb{R}^{2}, a subset R is said to be convex if for any pair of points $x, y \in R$, every point on the straight line segment joining x and y is also within R.
(Not directly applicable to subsets in \mathbb{Z}^{2})
There are several definitions for the digital convexity given by (Minsky, Kim, Eckhardt, Hubler....)
Under the connectivity assumption, Ekhdart has shown that the different definitions coincide.

Digital convexity-DC

Convexity

In \mathbb{R}^{2}, a subset R is said to be convex if for any pair of points $x, y \in R$, every point on the straight line segment joining x and y is also within R.
(Not directly applicable to subsets in \mathbb{Z}^{2})
There are several definitions for the digital convexity given by (Minsky, Kim, Eckhardt , Hubler....)
Under the connectivity assumption, Ekhdart has shown that the different definitions coincide.
In this presentation, we consider finite and 4-connected sets of \mathbb{Z}^{2}.
And we use the definition of digital convexity based on convex hull as follows:

Definition

A finite 4-connected set S of \mathbb{Z}^{2} is digitally convex if $\operatorname{Conv}(S) \cap \mathbb{Z}^{2}=S$.

Terminology

- $C \subset \mathbb{Z}^{2}$, finite 4-connected digital convex set.

Terminology

- $C \subset \mathbb{Z}^{2}$, finite 4-connected digital convex set.
- $p(x)=x \oplus\left[\frac{1}{2}, \frac{1}{2}\right]^{2}$, pixel region whose centre is x and $V(C)=\cup_{x \in C} p(x)$

Terminology

- $C \subset \mathbb{Z}^{2}$, finite 4-connected digital convex set.
- $p(x)=x \oplus\left[\frac{1}{2}, \frac{1}{2}\right]^{2}$, pixel region whose centre is x and $V(C)=\cup_{x \in C} p(x)$
- $\operatorname{Bd}(V(C))$ the topological boundary of $V(C) ; \operatorname{Bd}(C)$

Terminology

- $C \subset \mathbb{Z}^{2}$, finite 4-connected digital convex set.
- $p(x)=x \oplus\left[\frac{1}{2}, \frac{1}{2}\right]^{2}$, pixel region whose centre is x and $V(C)=\cup_{x \in C} p(x)$
- $\operatorname{Bd}(V(C))$ the topological boundary of $V(C) ; \operatorname{Bd}(C)$
- Convex hull of $\operatorname{Bd}(C)$, denoted by $\operatorname{conv}(B d(C))$

Main questions

(1) For a finite, 4-connected and digitally convex set C of \mathbb{Z}^{2} and a point x of C, we would like to verify if $C \backslash\{x\}$ (resp. $C \cup\{x\}$) is still digitally convex (and 4-connected)

Main questions

(1) For a finite, 4-connected and digitally convex set C of \mathbb{Z}^{2} and a point x of C, we would like to verify if $C \backslash\{x\}$ (resp. $C \cup\{x\}$) is still digitally convex (and 4-connected)

Main questions

(1) For a finite, 4-connected and digitally convex set C of \mathbb{Z}^{2} and a point x of C, we would like to verify if $C \backslash\{x\}$ (resp. $C \cup\{x\}$) is still digitally convex (and 4-connected)

What are the characterizations of insertable and removable pixels for a DC set?

Main questions

(1) For a finite, 4-connected and digitally convex set C of \mathbb{Z}^{2} and a point x of C, we would like to verify if $C \backslash\{x\}$ (resp. $C \cup\{x\}$) is still digitally convex (and 4-connected)

What are the characterizations of insertable and removable pixels for a DC set?
(2) What is the process to follow in order to deflate or inflate a DC set?

Main questions

(1) For a finite, 4-connected and digitally convex set C of \mathbb{Z}^{2} and a point x of C, we would like to verify if $C \backslash\{x\}$ (resp. $C \cup\{x\}$) is still digitally convex (and 4-connected)

What are the characterizations of insertable and removable pixels for a DC set?
(2) What is the process to follow in order to deflate or inflate a DC set?

Our approach to solve these questions is based on Combinatorics on words by studying the boundary word of $\mathrm{C}, \mathrm{W}(\mathrm{C})$.

Boundary word

					, 0	0				
		0	0		1	$\overline{1}$		0		
	0	1						1		
	1							$\overline{1}$	0	
	$\overline{0}$	1						$\overline{0}$	$\overline{0}$	1
		1				$\overline{0}$		$\overline{1}$		
		$\overline{0}$	1			$\overline{1}$				
				$\overline{0}$	\bar{O}					

The boundary word of DC is $W(C)=10100100 \overline{1} 0 \overline{11} 01 \overline{00101001} 1 \overline{1} 1 \overline{0}$.

Boundary word

					, 0	0				
		0	0		1	$\overline{1}$		0		
	0	1						1		
	1							$\overline{1}$	0	
	$\overline{0}$	1						$\overline{0}$	$\overline{0}$	1
		1				$\overline{0}$		$\overline{1}$		
		$\overline{0}$	1			$\overline{1}$				
				$\overline{0}$	\bar{O}					

The boundary word of DC is $W(C)=10100100 \overline{1} 0 \overline{11} 01 \overline{00101001} 1 \overline{0} 11 \overline{0}$. By applying the Lyndon factorization on $W(C)$, we obtain:

Boundary word

					, 0	0				
		0	0		1	$\overline{1}$		0		
	0	1						1		
	1							$\overline{1}$	0	
	$\overline{0}$	1						$\overline{0}$	$\overline{0}$	1
		1				$\overline{0}$		$\overline{1}$		
		$\overline{0}$	1			$\overline{1}$				
				$\overline{0}$	\bar{O}					

The boundary word of DC is $W(C)=10100100 \overline{1} 0 \overline{11} 01 \overline{00101001} 1 \overline{0} 1 \overline{0}$.
By applying the Lyndon factorization on $W(C)$, we obtain:

$$
W(C)=(1)(01)(001) 0^{2}(\overline{10})(\overline{110})(1)(\overline{00101})(\overline{0})^{2}(1 \overline{0})(11 \overline{0})
$$

where each factor is a Christoffel word.

Theorem (BLPR09)

A word $w \in\{0,1\}^{*}$ is WN -convex if and only if its Lyndon factorization is unique, $w_{1}^{n_{1}} w_{2}^{n_{2}} \ldots w_{k}^{n_{k}}$, and their factors are all primitive Christoffel words.

Theorem (BLPR09)

A word $w \in\{0,1\}^{*}$ is WN -convex if and only if its Lyndon factorization is unique, $w_{1}^{n_{1}} w_{2}^{n_{2}} \ldots w_{k}^{n_{k}}$, and their factors are all primitive Christoffel words.

Property

Given a 4-connected digitally convex set C, each vertex of the $\operatorname{conv}(\operatorname{Bd}(C))$, corresponds to the end of each factor of the Lyndon factorization of $W(C)$.

Theorem (BLPR09)

A word $w \in\{0,1\}^{*}$ is WN -convex if and only if its Lyndon factorization is unique, $w_{1}^{n_{1}} w_{2}^{n_{2}} \ldots w_{k}^{n_{k}}$, and their factors are all primitive Christoffel words.

Property

Given a 4-connected digitally convex set C, each vertex of the $\operatorname{conv}(\operatorname{Bd}(C))$, corresponds to the end of each factor of the Lyndon factorization of $W(C)$.

The red points over $W(C)$ correspond to the Lyndon pixels of $V(C)$.

Deflation

Deflation

Deflation

Theorem

Given a 4 -connected, digitally convex set C of \mathbb{Z}^{2}, let us consider its boundary word $W(C)$ and its Lyndon factorization given by $W(C)=\ell_{1}^{n_{1}} \ell_{2}^{n_{2}} \ldots \ell_{s}^{n_{s}}$. A pixel $p(x)$ for a certain $x \in C$ is removable if x is a simple point and $p(x)$ is a Lyndon pixel.

Updating $W(C)$

(1) Removing the correct candidate (with any order) affects $W(C)$

Updating $W(C)$

(1) Removing the correct candidate (with any order) affects $W(C)$
(c) Lyndon factorization must be modified

Updating $W(C)$

(1) Removing the correct candidate (with any order) affects $W(C)$
(2) Lyndon factorization must be modified

- Either we loose some Lyndon pixels or we gain others

Updating $W(C)$

(1) Removing the correct candidate (with any order) affects $W(C)$
(2) Lyndon factorization must be modified

- Either we loose some Lyndon pixels or we gain others

Updating $W(C)$

(1) Removing the correct candidate (with any order) affects $W(C)$
(2) Lyndon factorization must be modified

- Either we loose some Lyndon pixels or we gain others

- Avoid the choice of the pixel that will lead to a $W(C)$ of the form $1^{k} 0^{\prime} \overline{1}^{k} \overline{0}^{\prime}$

Furthest point

Furthest point

$Q=f u(w)$, over the Christoffel word of slope $\frac{5}{8}$.
Its corresponding pixel is called the furthest pixel.

Switching position and local modifications for the inflation

Lemma(Tarsissi et al-17)

Let $w=u . v$ be a Christoffel word of length strictly greater than 1 , with u and v the two Christoffel factors. Switching letters at the furthest point position k of w, switches the places of the Christoffel words u and v, and we get:

$$
\operatorname{switch}_{k}(w)=\left(w^{+}, w^{-}\right)=v . u ; \quad \text { where } \operatorname{switch}_{k}(w)=v u, \text { and } \rho(v)>\rho(u) .
$$

Switching position and local modifications for the inflation

Lemma(Tarsissi et al-17)

Let $w=u . v$ be a Christoffel word of length strictly greater than 1 , with u and v the two Christoffel factors. Switching letters at the furthest point position k of w, switches the places of the Christoffel words u and v, and we get:

$$
\operatorname{switch}_{k}(w)=\left(w^{+}, w^{-}\right)=v . u ; \quad \text { where } \text { switch }_{k}(w)=v u \text {, and } \rho(v)>\rho(u) .
$$

- Special study for the case where $|w|=1$.

Switching position and local modifications for the inflation

Lemma(Tarsissi et al-17)

Let $w=u . v$ be a Christoffel word of length strictly greater than 1 , with u and v the two Christoffel factors. Switching letters at the furthest point position k of w, switches the places of the Christoffel words u and v, and we get:

$$
\operatorname{switch}_{k}(w)=\left(w^{+}, w^{-}\right)=v . u ; \quad \text { where } \text { switch }_{k}(w)=v u \text {, and } \rho(v)>\rho(u) .
$$

- Special study for the case where $|w|=1$.
- Or when the factor is of multiplicity greater than 1.

Switching position and local modifications for the inflation

Lemma(Tarsissi et al-17)

Let $w=u . v$ be a Christoffel word of length strictly greater than 1 , with u and v the two Christoffel factors. Switching letters at the furthest point position k of w, switches the places of the Christoffel words u and v, and we get:

$$
\operatorname{switch}_{k}(w)=\left(w^{+}, w^{-}\right)=v . u ; \quad \text { where } \text { switch }_{k}(w)=v u \text {, and } \rho(v)>\rho(u) .
$$

- Special study for the case where $|w|=1$.
- Or when the factor is of multiplicity greater than 1.

Updating $W(C)$

Updating $W(C)$

Updating $W(C)$

OR Loosing convexity

Updating $W(C)$

a)

b)

OR Loosing convexity

$$
\text { Let } w_{1}=C\left(\frac{30}{41}\right) \text { and } w_{2}=C\left(\frac{5}{7}\right) \text {, }
$$

switch $_{k}\left(w_{1}\right) w_{2}=C\left(\frac{11}{15}\right) C\left(\frac{19}{26}\right) C\left(\frac{5}{7}\right) ; w_{1}$ switch $_{k^{\prime}}\left(w_{2}\right)=C\left(\frac{30}{41}\right) C\left(\frac{3}{4}\right) C\left(\frac{2}{3}\right)$.

Updating $W(C)$

a)

b)

OR Loosing convexity

$$
\text { Let } w_{1}=C\left(\frac{30}{41}\right) \text { and } w_{2}=C\left(\frac{5}{7}\right) \text {, }
$$

$$
\begin{gathered}
\text { switch }_{k}\left(w_{1}\right) w_{2}=C\left(\frac{11}{15}\right) C\left(\frac{19}{26}\right) C\left(\frac{5}{7}\right) ; w_{1} \text { switch }_{k^{\prime}}\left(w_{2}\right)=C\left(\frac{30}{41}\right) C\left(\frac{3}{4}\right) C\left(\frac{2}{3}\right) . \\
\frac{11}{15}>\frac{19}{26}>\frac{5}{7} \text {, while } \frac{30}{41}<\frac{3}{4} .
\end{gathered}
$$

Global Digital convexity verification and its algorithm

Theorem

Let $W(C)=\ell_{1}^{n_{1}} \ldots \ell_{s}^{n_{s}}$ be a boundary word of a 4-connected digital convex set C. By switching two letters of the first Christoffel word ℓ_{1} at the furthest point position, we obtain two line segments: $V_{0} V$ discretized by ℓ_{1}^{+}and $V V_{1}$ discretized by $\ell_{1}^{-} \ell_{1}^{n_{1}-1}$.
(1) If $\ell_{2}<\ell_{1}^{-} \ell_{1}^{n_{1}-1}$,
(2) If $\ell_{2}=\ell_{1}^{-} \ell_{1}^{n_{1}-1}$; i.e. ℓ_{2} is aligned with $\ell_{1}^{-} \ell_{1}^{n_{1}-1}$,
(0) If $\ell_{2}=\left(\ell_{1}^{-} \ell_{1}^{n_{1}-1}\right)^{m_{1}} \ell_{1}$, with $m_{1} \geq 1$, then we check the propagation by concatenating $\ell_{1}^{-} \ell_{1}^{n_{1}-1}$ and ℓ_{2},

- Otherwise, we loose the convexity and this point should not be chosen.

Global Digital convexity verification and its algorithm

Theorem

Let $W(C)=\ell_{1}^{n_{1}} \ldots \ell_{s}^{n_{s}}$ be a boundary word of a 4-connected digital convex set C. By switching two letters of the first Christoffel word ℓ_{1} at the furthest point position, we obtain two line segments: $V_{0} V$ discretized by ℓ_{1}^{+}and $V V_{1}$ discretized by $\ell_{1}^{-} \ell_{1}^{n_{1}-1}$.
(1) If $\ell_{2}<\ell_{1}^{-} \ell_{1}^{n_{1}-1}$,
(c) If $\ell_{2}=\ell_{1}^{-} \ell_{1}^{n_{1}-1}$; i.e. ℓ_{2} is aligned with $\ell_{1}^{-} \ell_{1}^{n_{1}-1}$,
(0) If $\ell_{2}=\left(\ell_{1}^{-} \ell_{1}^{n_{1}-1}\right)^{m_{1}} \ell_{1}$, with $m_{1} \geq 1$, then we check the propagation by concatenating $\ell_{1}^{-} \ell_{1}^{n_{1}-1}$ and ℓ_{2},

- Otherwise, we loose the convexity and this point should not be chosen.

Being a furthest pixel is a sufficient condition for the insertable pixel.

Theorem:Strong condition to characterize an insertable pixel Let $W(C)=\ell_{1}^{n_{1}} \ldots \ell_{s}^{n_{s}}$ and ℓ_{j} be a primitive Christoffel word of maximal length. Applying the $\operatorname{switch}_{k}\left(\ell_{j}\right)=\left(\ell_{j}^{+}, \ell_{j}^{-}\right)$then the new Lyndon factorization gives:

Theorem:Strong condition to characterize an insertable pixel Let $W(C)=\ell_{1}^{n_{1}} \ldots \ell_{s}^{n_{s}}$ and ℓ_{j} be a primitive Christoffel word of maximal length. Applying the $\operatorname{switch}_{k}\left(\ell_{j}\right)=\left(\ell_{j}^{+}, \ell_{j}^{-}\right)$then the new Lyndon factorization gives:
(1) If $\left(i>1\right.$ or $\left.\ell_{j-1}>\ell_{j}^{+}\right)$and $\left(i<n_{j}\right.$ or $\left.\ell_{j+1}<\ell_{j}^{-}\right)$:

$$
\ell_{1}^{n_{1}} \ell_{2}^{n_{2}} \ldots \ell_{j-1}^{n_{j-1}}\left(\ell_{j}^{i-1} \ell_{j}^{+}\right)\left(\ell_{j}^{-} \ell_{j}^{n_{j}-i}\right) \ell_{j+1}^{n_{j+1}} \ldots \ell_{k}^{n_{k}} .
$$

Theorem:Strong condition to characterize an insertable pixel Let $W(C)=\ell_{1}^{n_{1}} \ldots \ell_{s}^{n_{s}}$ and ℓ_{j} be a primitive Christoffel word of maximal length. Applying the $\operatorname{switch}_{k}\left(\ell_{j}\right)=\left(\ell_{j}^{+}, \ell_{j}^{-}\right)$then the new Lyndon factorization gives:
(1) If $\left(i>1\right.$ or $\left.\ell_{j-1}>\ell_{j}^{+}\right)$and $\left(i<n_{j}\right.$ or $\left.\ell_{j+1}<\ell_{j}^{-}\right)$:

$$
\ell_{1}^{n_{1}} \ell_{2}^{n_{2}} \ldots \ell_{j-1}^{n_{j-1}}\left(\ell_{j}^{i-1} \ell_{j}^{+}\right)\left(\ell_{j}^{-} \ell_{j}^{n_{j}-i}\right) \ell_{j+1}^{n_{j+1}} \ldots \ell_{k}^{n_{k}} .
$$

(2) If $\left(i=1\right.$ and $\left.\ell_{j-1}=\ell_{j}^{+}\right)$and $\left(i<n_{j}\right.$ or $\left.\ell_{j+1}<\ell_{j}^{-}\right)$:

$$
\ell_{1}^{n_{1}} \ell_{2}^{n_{2}} \ldots \ell_{j-1}^{n_{j-1}+1}\left(\ell_{j}^{-} \ell_{j}^{n_{j}-i}\right) \ell_{j+1}^{n_{j+1}} \ldots \ell_{k}^{n_{k}} .
$$

(3) If $\left(i>1\right.$ or $\left.\ell_{j-1}>\ell_{j}^{+}\right)$and $\left(i=n_{j}\right.$ or $\left.\ell_{j+1}=\ell_{j}^{-}\right)$:

$$
\ell_{1}^{n_{1}} \ell_{2}^{n_{2}} \ldots \ell_{j-1}^{n_{j}-1}\left(\ell_{j}^{i-1} \ell_{j}^{+}\right) \ell_{j+1}^{n_{j+1}+1} \ldots \ell_{k}^{n_{k}} .
$$

Theorem:Strong condition to characterize an insertable pixel Let $W(C)=\ell_{1}^{n_{1}} \ldots \ell_{s}^{n_{s}}$ and ℓ_{j} be a primitive Christoffel word of maximal length. Applying the $\operatorname{switch}_{k}\left(\ell_{j}\right)=\left(\ell_{j}^{+}, \ell_{j}^{-}\right)$then the new Lyndon factorization gives:
(1) If $\left(i>1\right.$ or $\left.\ell_{j-1}>\ell_{j}^{+}\right)$and $\left(i<n_{j}\right.$ or $\left.\ell_{j+1}<\ell_{j}^{-}\right)$:

$$
\ell_{1}^{n_{1}} \ell_{2}^{n_{2}} \ldots \ell_{j-1}^{n_{j-1}}\left(\ell_{j}^{i-1} \ell_{j}^{+}\right)\left(\ell_{j}^{-} \ell_{j}^{n_{j}-i}\right) \ell_{j+1}^{n_{j+1}} \ldots \ell_{k}^{n_{k}} .
$$

(2) If $\left(i=1\right.$ and $\left.\ell_{j-1}=\ell_{j}^{+}\right)$and $\left(i<n_{j}\right.$ or $\left.\ell_{j+1}<\ell_{j}^{-}\right)$:

$$
\ell_{1}^{n_{1}} \ell_{2}^{n_{2}} \ldots \ell_{j-1}^{n_{j-1}+1}\left(\ell_{j}^{-} \ell_{j}^{n_{j}-i}\right) \ell_{j+1}^{n_{j+1}} \ldots \ell_{k}^{n_{k}} .
$$

(3) If $\left(i>1\right.$ or $\left.\ell_{j-1}>\ell_{j}^{+}\right)$and $\left(i=n_{j}\right.$ or $\left.\ell_{j+1}=\ell_{j}^{-}\right)$:

$$
\ell_{1}^{n_{1}} \ell_{2}^{n_{2}} \cdots \ell_{j-1}^{n_{j}-1}\left(\ell_{j}^{i-1} \ell_{j}^{+}\right) \ell_{j+1}^{n_{j+1}+1} \cdots \ell_{k}^{n_{k}} .
$$

(1) If $\left(i=1\right.$ and $\left.\ell_{j-1}=\ell_{j}^{+}\right)$and $\left(i=n_{j}\right.$ and $\left.\ell_{j+1}=\ell_{j}^{-}\right)$:

$$
\ell_{1}^{n_{1}} \ell_{2}^{n_{2}} \ldots \ell_{j-1}^{n_{j-1}+1} \ell_{j+1}^{n_{j+1}+1} \ldots \ell_{k}^{n_{k}} .
$$

Sketch proof

The proof of this theorem relies on two points:
(1) Showing that $\ell_{j}^{i-1} \ell_{j}^{+}$and $\ell_{j}^{-} \ell_{j}^{n_{j}-i}$ are Christoffel words.
(2) Proving the following inequalities: $\ell_{j-1}>\ell_{j}^{i-1} \ell_{j}^{+}>\ell_{j}^{-} \ell_{j}^{n_{j}-i}>\ell_{j+1}$.

- The inequality in the middle by applying some Christoffel morphisms.
- If the last inequality is not correct, we have: $\ell_{j}^{-} \leq \ell_{j}^{-} \ell_{j}^{n_{j}-i} \leq \ell_{j+1}<\ell_{j}$. Then ℓ_{j+1} is a Christoffel word in the angle of ℓ_{j}^{-}, ℓ_{j} and can't be equal to ℓ_{j}, in this case it has to be longer than ℓ_{j}, contradiction to the main condition that ℓ_{j} is the longest Christoffel.
- The first inequality is treated in a symmetric way as the previous one.

Remarks and Conclusion

(1) The propagation doesn't exceed the next Christoffel word $\ell_{j+1}^{n_{j}+1}$ or the previous one $\ell_{j-1}^{n_{j}-1}$.

Remarks and Conclusion

(1) The propagation doesn't exceed the next Christoffel word $\ell_{j+1}^{n_{j}+1}$ or the previous one $\ell_{j-1}^{n_{j}-1}$.
(2) We are able to reduce this condition from a global maximality to a local one, where it is enough to split the Christoffel word ℓ_{j} that respects: $\left|\ell_{j}\right|>\max \left(\left|\ell_{j-1}\right|,\left|\ell_{j+1}\right|\right)$.

Remarks and Conclusion

(1) The propagation doesn't exceed the next Christoffel word $\ell_{j+1}^{n_{j}+1}$ or the previous one $\ell_{j-1}^{n_{j}-1}$.
(2) We are able to reduce this condition from a global maximality to a local one, where it is enough to split the Christoffel word ℓ_{j} that respects: $\left|\ell_{j}\right|>\max \left(\left|\ell_{j-1}\right|,\left|\ell_{j+1}\right|\right)$.
(0) The furthest pixels of all the primitive Christoffel words of maximal length correspond to insertable pixels.

Remarks and Conclusion

(1) The propagation doesn't exceed the next Christoffel word $\ell_{j+1}^{n_{j}+1}$ or the previous one $\ell_{j-1}^{n_{j}-1}$.
(2) We are able to reduce this condition from a global maximality to a local one, where it is enough to split the Christoffel word ℓ_{j} that respects: $\left|\ell_{j}\right|>\max \left(\left|\ell_{j-1}\right|,\left|\ell_{j+1}\right|\right)$.
(0) The furthest pixels of all the primitive Christoffel words of maximal length correspond to insertable pixels.

Some Perspectives

(1) The algorithmic details and optimization of the process.
(2) The choice of the optimal heuristic for deflating a digital convex set.

- Apply these algorithms on non-convex shapes by studying the locally convex boundary using combinatorics on words.

Some Perspectives

(1) The algorithmic details and optimization of the process.
(2) The choice of the optimal heuristic for deflating a digital convex set.

- Apply these algorithms on non-convex shapes by studying the locally convex boundary using combinatorics on words.

THANK YOU

