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Why digital convexity ?

I no (infinitesimal) differential geometry for digital shapes
I convexity: a fundamental tool to analyze the geometry of shapes
I identifies convex/concave/flat/saddle regions
I gives locally its piecewise linear geometry
I facets give normal estimations



Natural digital convexity is not satisfactory

Definition (Natural digital convexity (or H-convexity))
X ⊂ Zd is digitally convex iff cvxh (X ) ∩ Zd = X

= ⇒ convex
X cvxh (X ) ∩ Zd

Digital convexity does not imply digital connectedness !
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Usual digital convexity adds connectedness

Definition (Usual digital convexity)
X ⊂ Zd is digitally convex iff cvxh (X ) ∩ Zd = X and X connected

I many more or less equivalent definitions in 2D: straight segment
convexity, triangle convexity, . . . [Minsky, Papert 88], [Kim, Rosenfeld 83],
[Huübler, Klette, Voss89], . . .

I none extends well to 3D or more

convex convex !
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Cubical grid, intersection complex

I cubical grid complex Cd
I Cd

0 vertices or 0-cells = Zd

I Cd
1 edges or 1-cells = open unit segment joining 0-cells

I Cd
2 faces or 2-cells = open unit square joining 1-cells

I . . .
I intersection complex of Y ⊂ Rd

C̄dk [Y ] := {c ∈ Cdk , c̄ ∩ Y 6= ∅}

Y cells C̄d0 [Y ], C̄d1 [Y ], C̄d2 [Y ]



Full convexity

Definition (Full convexity)
A non empty subset X ⊂ Zd is digitally k-convex for 0 6 k 6 d whenever

C̄dk [X ] = C̄dk [cvxh (X )]. (1)

Subset X is fully convex if it is digitally k-convex for all k, 0 6 k 6 d .

=
C̄d0 [X ] C̄d0 [cvxh (X )]
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Full convexity

Definition (Full convexity)
A non empty subset X ⊂ Zd is digitally k-convex for 0 6 k 6 d whenever

C̄dk [X ] = C̄dk [cvxh (X )]. (1)

Subset X is fully convex if it is digitally k-convex for all k, 0 6 k 6 d .

Full convexity eliminates too thin digital convex sets in arbitrary
dimension.
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Digital connectedness

Theorem
If the digital set X ⊂ Zd is fully convex, then X is d-connected.

Proof.
I for x , y ∈ X , segment x – y intersects cells c0, c1, . . . , cm,
I each ci touches at least one corner zi ∈ X ,
I each ci is a face of ci+1 or inversely,
I implies zi and zi+1 shares a unit cube, hence d-connected

[x , y ] intersected cells ci points zi



Simple connectedness
Theorem
If the digital set X ⊂ Zd is fully convex, then the body of its intersection
complex is simply connected.

Proof.
I let A := {x(t), t ∈ [0, 1]} be a closed curve in

∥∥C̄d [X ]
∥∥

I sequence of intersected cells ci ∈ C̄d [X ]

I sequence of associated corners zi ∈ X

I homotopy between A and path z0 − z1 − · · · − zn − z0
I path z0 − z1 − · · · − zn − z0 subset of cvxh (X ) ⇒ contractible

A intersected cells (ci ) path z0 − z1 − · · · − zn − z0
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Discrete Minkowski sum Uα

I let X ⊂ Zd , denote ei (X ) the translation of X with axis vector ei
I let I d := {1, . . . , d} be the set of possible directions
I let U∅(X ) := X , and, for α ⊂ I d and i ∈ α, recursively

Uα(X ) := Uα\i (X ) ∪ ei (Uα\i (X )).

U∅(X ) = X U{1}(X ) = U∅(X ) ∪ e1(U∅(X ))

U{2}(X ) = U∅(X ) ∪ e2(U∅(X )) U{1,2}(X ) = U{1}(X ) ∪ e1(U{1}(X ))



A morphological characterization

Theorem
A non empty subset X ⊂ Zd is digitally k-convex for 0 6 k 6 d iff

∀α ∈ I dk ,Uα(X ) = cvxh (Uα(X )) ∩ Zd . (2)

It is thus fully convex if the previous relations holds for all k, 0 6 k 6 d .

6=
X U{1}(X ) cvxh

(
U{1}(X )

)
∩ Zd

Algorithm in arbitrary dimension

Uα(X ) easily computed while convex hull algorithms exist in arbi-
trary dimension. Slowest part is lattice point enumeration in convex
hull.
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Thick enough arithmetic planes are full convex

Arithmetic plane
I irreducible normal vector N ∈ Zd

I intercept µ ∈ Z
I positive thickness ω ∈ Z, ω > 0

P(µ,N, ω) := {x ∈ Zd , µ 6 x ·N < µ+ω}

Theorem
Arithmetic planes are fully convex for thickness ω > ‖N‖∞.
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Tangency

Definition
The digital set A ⊂ X ⊂ Zd is said to be k-tangent to X for 0 6 k 6 d
whenever C̄dk [cvxh (A)] ⊂ C̄dk [X ]. It is tangent to X if the relation holds
for all such k . Elements of A are called cotangent.

X and C̄d [X ] tangent tangent
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Tangential cover

In 2D, maximal fully convex tangent subsets form the classical tangential
cover of [Feschet, Tougne 99]

Theorem
When d = 2, if C is a simple 2-connected digital contour (i.e.
8-connected in Rosenfeld’s terminology), then the fully convex subsets of
C that are maximal and tangent are the classical maximal naive digital
straight segments.



Tangential cover in 3D ? dD ?

I can we define facets of X as inextensible connected pieces of
arithmetic planes standard planes along X ?

I contrarily to 2D, maximal pieces of planes are not tangent.
I there are a lot of inextensible DPS
I most of them are meaningless

I greedy methods to isolate meaningful ones:
[Klette, Sun, Coeurjolly, Sivignon, Kenmochi, Provot, Debled-Rennesson, Charrier, L., . . . ]

Tangency extends to dD!

Tangent subsets in our sense are indeed tangent to X since their convex
hull must lie close to X .
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Piecewise linear reversible reconstruction in dD
Let Del (X ) be the Delaunay complex of X .

Definition
The tangent Delaunay complex DelT (X ) to X is the complex made of
the cells τ of Del (X ) such that the vertices of τ are tangent to X .

I its boundary is the convex hull when X is fully convex,

Input digital shape X Reconstruction DelT (X ) Bad simplices of Del (X )

Theorem
The body of DelT (X ) is at Hausdorff L∞-distance 1 to X . DelT (X ) is a
reversible polyhedrization, i.e. ‖DelT (X )‖ ∩ Zd = X .
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Conclusion

Pros of full convexity
I natural definition in arbitrary dimension that uses Zd ⊂ Cd

I guarantees connectedness and simple connectedness
I morphological characterization that allows simple convexity check
I thick enough arithmetic planes are fully convex
I entails a consistent definition of tangency
I simple tight and reversible polyhedrization

Cons of full convexity
I (2d − 1) times slower to check convexity
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