An equivalence relation between morphological dynamics and persistent homology in *n*-D

Nicolas Boutry^{1,2} Thierry Géraud¹ Laurent Najman²

→ nicolas.boutry@lrde.epita.fr

¹ EPITA Research and Development Laboratory (LRDE), France

² Université Paris-Est, LIGM, Équipe A3SI, ESIEE, France

GDMM 2021

Outline

< 67 >

э.

Motivation

Outline

N. Boutry, T. Géraud, L. Najman (LRDE/LIGM)

An equivalence between PH and MM in n-D

GDMM 2021 3

Dynamics vs. persistence

Domains:

- Dynamics ∈ Mathematical Morphology
- Topological persistence \in Persistent Homology.

Practical uses:

- dynamics → markers → watersheds → segmentation → image analysis,
- persistence \rightarrow pairings \rightarrow cancelations \rightarrow simplification \rightarrow image visualisation

Differences:

- dynamics → correspond to regional minima,
- persistence \sim is related to gradient vector fields (Morse-Smale complexes).

Both encode topological information of functions.

Motivation

An example

→ same pairings but different definitions!

э

3 > 4 3

Morse functions

Morse functions (general definition):

- $f \in C^2(\mathcal{D})$ and the Hessian matrix is not degenerated at the critical points,
- is does not have any plateau,
- for pairings, we need critical values to be unique.

Dynamics I

- $f : \mathbb{R}^n \to \mathbb{R}$ a Morse function
- x_{\min} a local minimum of f,
- γ a path following the graph of *f* from $\gamma(0) := x_{\min}$ to $\gamma(1)$ s.t.

 $f(\gamma(1)) < f(x_{\min}),$

- effort $(\gamma, x_{\min}) = \max_{s \in [0,1]} f(\gamma(s)) f(x_{\min}),$
- $dyn(x_{\min}) := \min_{\forall \gamma} effort(\gamma, x_{\min}).$

Equivalently, $dyn(x_{min}) = f(x_{1sad}) - f(x_{min})$ with x_{1sad} the local max of *f* corresponding to the minimal effort.

 x_{\min} and x_{1sad} where the optimal path is at maximum height are then paired by dynamics.

Dynamics II

An interesting relation in MM:

Topological persistence I

Pairing by persistence

- $f : \mathbb{R}^n \to \mathbb{R}$ a Morse function,
- x_{1sad} a 1-saddle of f,
- $C^{1sad} = CC([f \le f(x_{1sad})], x_{1sad}),$
- CC_1 and CC_2 the **two** components of $[f < f(x_{1sad})]$ whose boundary contains x_{1sad} ,
- $\operatorname{rep}_i := \operatorname{arg\,min}_{x \in CC_i} f(x)$,

• $x_{\min} := \arg \max_{x \in \{rep_1, rep_2\}} f(x)$, Then, x_{1sad} is paired with x_{\min} by persistence.

 \Rightarrow Topological persistence := $f(x_{1sad}) - f(x_{min})$.

< < >> < <</>

э.

Hypothesis

- $f : \mathbb{R}^n \to \mathbb{R}$ a Morse function,
- X_{min} a local minimum of f,
- x_{\min} paired with x_{1sad} by dynamics,
- We define $C_1 = CC([f < f(x_{1sad})], x_{min}).$
- We define C₂ the component of [f < f(x_{1sad})] which does *not* contain x_{min} and whose closure contains x_{1sad}.

Property (P1)

 $\mathbf{X}_{\min} = \arg\min_{x \in \mathbf{C}_1} f(x)$

Property (P2)

$$\mathbf{x}'_{\min} := \arg\min_{x \in C_2} f(x) \text{ satisfies } f(\mathbf{x}'_{\min}) < f(\mathbf{x}_{\min}).$$

Theorem

 x_{1sad} is paired with x_{min} by persistence.

Property (P1)

$$X_{\min} = \arg\min_{x \in C_1} f(x)$$

Intuition: if there exists $x^* \in C_1$ s.t. $f(x^*)$ is lower than $f(x_{\min})$, $dyn(x_{\min}) < f(x_{1sad}) - f(x_{\min}) \rightsquigarrow$ contradiction.

Property (P2)

 $\mathbf{x}'_{\min} := \arg\min_{x \in C_2} f(x) \text{ satisfies } f(\mathbf{x}'_{\min}) < f(\mathbf{x}_{\min}).$

Intuition: if we increase $f(x'_{\min})$ *above* $f(x_{\min})$, $dyn(x_{\min})$ increases \rightarrow contradiction.

First main result of this paper:

Theorem

 x_{1sad} is paired with x_{min} by persistence.

< ロ > < 同 > < 回 > < 回 >

э

Pairing by persistence implies pairing by dynamics I

Hypothesis

- $f : \mathbb{R}^n \to \mathbb{R}$ a Morse function with x_{1sad} a 1-saddle of f,
- x_{1sad} and x_{min} are paired by persistence:
 - C_1 , C_2 the two components of $[f < f(x_{1sad})]$ whose closure contains x_{1sad} ,
 - C_1 contains x_{\min} and $x_{\min} := \arg \min_{x \in C_1} f(x)$
 - C_2 does not contain x_{\min} and $x'_{\min} := \arg \min_{x \in C_2} f(x)$,
 - $f(x'_{\min}) < f(x_{\min})$.

Pairing by persistence implies pairing by dynamics II

Property

- 1 \exists a descending path γ from \mathbf{x}_{\min} to \mathbf{x}'_{\min} corresponding to an effort of $f(\mathbf{x}_{1sad}) f(\mathbf{x}_{\min})$,
- 2 then dyn(x_{\min}) $\leq f(x_{1sad}) f(x_{\min})$,
- 3 to reach a level lower than f(x_{min}) on f in an optimal way, the only possibility is to go through a 1-saddle,
- 4 then any optimal descending path goes through *x*_{1sad},
- 5 then dyn(x_{\min}) $\geq f(x_{1sad}) f(x_{\min})$,
- 6 then $dyn(x_{min}) = f(x_{1sad}) f(x_{min})$,
- 7 the only local extremum satisfying (6) is x_{1sad} .

Pairing by persistence implies pairing by dynamics III

Second main result of this paper:

Theorem

When f is a n-D Morse function and x_{min} and x_{1sad} are paired by persistence, then x_{1sad} and x_{min} are paired by dynamics too.

B → < B

- Not only two directions are possible as in 1D: this number becomes infinite in 2D and beyond,
- We had to prove that at a 1-saddle point (on a Morse function), we have always two components which merge when the threshold sets increase to f(x_{1sad}),
- We had to change systematically the coordinates so that the functions can be written:

$$f(x_1,...,x_n) = -x_1^2 + x_2^2 + \cdots + x_n^2.$$

- We had to make "algorithmic" the computation of optimal paths in *n*-D to prove that they always go through a 1-saddle point,
- the calculus relative to the proofs are a little more complex but the concept is the same.

Conclusion

Outline

B → < B

Summary:

- on Morse functions, pairings by persistence and by dynamics are equivalent,
- persistence and dynamics values are then equal,
- another relation between MM and MT:

 $WS(f) \cup WS(-f) = MS(f),$

• finally, we reinforced the relation between MM and MT!

Future works:

- extension to discrete Morse functions (Forman),
- investigate if algorithms of MM can be used in PH and conversely,

Conclusion

Questions

Is this a Morse function?

