GRoupe de travail GDMM 2021

Alexandra Bac

LIS Marseille - équipe G-MOD
TOPOLOGIE ALGÉBRIQUE
ALGORITHMIQUE
(Aix $*$ Marseille

universite

Introduction

Topologie algébrique et GDMM

Topologie

 « forme » d'un espace à déformation continue près indépendamment de la géométrie (Euler - 1736)

Topologie algébrique et GDMM

Topologie

 « forme » d'un espace à déformation continue près indépendamment de la géométrie (Euler - 1736)

Invariants topologiques

Composantes connexes

Topologie algébrique et GDMM

Topologie

Algèbre

Topologie algébrique

Objet

Objet algébrique (groupe)

Topologie algébrique

Topologie algébrique

ler groupe fondamental

Groupes d'homotopie

Homologie

Topologie algébrique

Topologie algébrique

ler groupe fondamental

Groupes d'homotopie

Homologie

Th. Seifert-Van Kampen

Présentation de groupe:

$$
\pi_{1}(X)=\left(\pi_{1}\left(X_{1}\right) \star \pi_{1}\left(X_{2}\right)\right) / N
$$

$X=X_{1} \cup X_{2} \quad X_{1} \cap X_{2}$ connexe par arc

Topologie algébrique

Topologie algábrique

ler groupe fondamental

Groupes d'homotopie
Th. Seifert-Van Kampen

$$
\begin{aligned}
& \pi_{1}(X)=\left\langle\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right| \\
& \left.\quad \alpha_{1} \beta_{1} \alpha_{1}^{-1} \beta_{1}^{-1}, \alpha_{2} \beta_{2} \alpha_{2}^{-1} \beta_{2}^{-1}\right\rangle
\end{aligned}
$$

Topologie algébrique

Topologie algábrique
ler groupe fondamental
Groupes d'homotopie

Homologie

Théorème de Novikov-Boone
Représentation d'un groupe \simeq groupe trivial non décidable ...

Topologie algébrique

Topologie algábrique

Plan

1. Homologie simpliciale

2. Aspects algorithmiques de l'homologie simpliciale [A. Bac]
3. Persistence homologique [A. Gonzalez Lorenzo]
4. Exemples d'applications

M2 Informatique et Mathématiques
Discrètes (M2 IMD)
Marseille - Luminy
«Topologie algébrique discrète»

Homologie Simpliciale

Homologie simpliciale

Complexe simplicial

Homologie simpliciale

Homologie simpliciale

$$
\begin{gather*}
C_{n} \quad C_{n-1} \quad \cdots \tag{0}
\end{gather*} C_{1} \quad C_{0} \quad 0
$$

A corps ou anneau

$$
\mathbb{Z} / 2 \mathbb{Z}
$$

(a) $a+\sqrt{3}+a x+a$

Homologie simpliciale

Topologie

Complexe simplicial
Trous

$$
C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{2}} C_{0} \rightarrow 0
$$

Opérateur de bord: $\partial_{q}: C_{q} \rightarrow C_{q-1}$
A corps ou anneau

Homologie simpliciale

Complexe simplicial

Topologie

Trous

$$
\partial_{1}\left(e_{0}\right)=v_{1}-v_{0}
$$

A corps ou anneau

Homologie simpliciale

Topologie

Complexe simplicial

Objet algébrique (groupe)
Complexe de chaînes
Trous

$$
\begin{gathered}
\partial_{2}\left(f_{0}\right)=-e_{1}+e_{2}-e_{0} \\
\partial_{1}\left(-e_{1}+e_{2}-e_{0}\right)=\text { Cycle } \\
\frac{-\left(y / 2-y_{1}\right)+\left(\nu / 2-y_{0}\right)-\left(y_{1}-y_{0}\right)}{} \\
=0
\end{gathered}
$$

ker ∂

Homologie simpliciale

Topologie

Complexe simplicial

Objet algébrique (groupe)
Complexe de chaînes

Trous

$$
\begin{gathered}
\overline{\partial_{2}\left(f_{0}\right)}=-e_{1}+e_{2}-e_{0} \quad \text { Bord } \\
\partial_{1}\left(-e_{1}+e_{2}-e_{0}\right)= \\
-\left(y_{2}-y_{1}\right)+\left(y_{2}-y_{0}\right)-\left(y_{1}-y_{0}\right) \\
=0
\end{gathered}
$$

$\operatorname{Im} \partial$

Homologie simpliciale

Topologie

Complexe simplicial

Objet algébrique (groupe)

Complexe de chaînes

Trous

$$
\begin{aligned}
& \partial_{2}\left(f_{0}\right)=-e_{1}+e_{2}-e_{0} \\
& \partial_{1}\left(-e_{1}+e_{2}-e_{0}\right)= \\
& -\left(1 / 2-y_{1}\right)+\left(\underline{1} / 2-y_{0}\right)-\left(y_{1}-y_{0}\right) \\
& =0
\end{aligned}
$$

Bords \subseteq cycles

Homologie simpliciale

Objet
Complexe simplicial

Topologie

Objet algébrique (groupe)

Complexe de chaînes

Trous

$$
\begin{aligned}
& \partial_{2}\left(f_{0}\right)=-e_{1}+e_{2}-e_{0} \\
& \partial_{1}\left(-e_{1}+e_{2}-e_{0}\right)= \\
& -\left(y_{2}-y_{1}\right)+\left(\underline{y} / 2-y_{0}\right)-\left(y_{1}-\not y_{0}\right) \\
& =0 \\
& \operatorname{Im} \partial_{q+1} \subseteq \operatorname{ker} \partial_{q}
\end{aligned}
$$

Homologie simpliciale

Topologie

Complexe simplicial
Trous

$$
C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{2}} C_{0} \rightarrow 0
$$

Opérateur de bord: $\partial_{q}: C_{q} \rightarrow C_{q-1}$

$$
\partial_{q} \partial_{q-1}=0 \quad \forall q
$$

Homologie simpliciale

Topologie

Complexe simplicial
Trous

$$
C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{2}} C_{0} \rightarrow 0
$$

q-ème groupe d'homologie

$$
H_{q}(C)=\operatorname{ker}\left(\partial_{q}\right) / \operatorname{Im}\left(\partial_{q+1}\right)
$$

Homologie simpliciale

Topologie

Complexe simplicial
Trous

$$
C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0
$$

q-ème groupe d'homologie

$$
\begin{aligned}
H_{q}(C)= & \operatorname{ker}\left(\partial_{q}\right) \operatorname{Im}\left(\partial_{q+1}\right) \\
& \text { Cycle Bord }
\end{aligned}
$$

Homologie simpliciale

$$
\alpha \sim \beta \text { si } \quad \beta-\alpha \in \operatorname{Im}\left(\partial_{q+1}\right)
$$

$$
H_{q}(C)=\frac{\operatorname{cyc}\left(\partial_{q}\right) \quad \operatorname{lm}\left(\partial_{q+1}\right)}{\text { Cord }}
$$

Homologie simpliciale

$$
\alpha \sim \beta \text { si } \quad \beta-\alpha \in \operatorname{Im}\left(\partial_{q+1}\right)
$$

$$
\alpha=0+\partial_{2}(\tau)
$$

$$
\alpha \sim 0
$$

$$
\begin{array}{r}
H_{q}(C)=\frac{\operatorname{ker}\left(\partial_{q}\right) \operatorname{Im}\left(\partial_{q+1}\right)}{\text { Cycle Bord }}
\end{array}
$$

Homologie simpliciale

$$
\alpha \sim \beta \text { si } \quad \beta-\alpha \in \operatorname{Im}\left(\partial_{q+1}\right)
$$

$$
\alpha ?
$$

$$
H_{q}(C)=\underset{\text { Cycle Bord }}{\operatorname{ker}\left(\partial_{q}\right) \operatorname{Im}\left(\partial_{q+1}\right)}
$$

Homologie simpliciale

$$
\alpha \sim \beta \quad \text { si } \quad \beta-\alpha \in \operatorname{Im}\left(\partial_{q+1}\right)
$$

$$
\beta=\alpha+\partial_{2}(\tau)
$$

$$
\begin{aligned}
& H_{q}(C)= \operatorname{ker}\left(\partial_{q}\right) \operatorname{Im}\left(\partial_{q+1}\right) \\
& \text { Cycle Bord }
\end{aligned}
$$

Homologie simpliciale

$$
\alpha \sim \beta \quad \text { si } \quad \beta-\alpha \in \operatorname{Im}\left(\partial_{q+1}\right)
$$

$\dot{\alpha}$ classe

$$
\beta=\alpha+\partial_{2}(\tau) \prod_{\alpha \sim \beta}^{\{\lambda \cdot \dot{\alpha} ; \lambda \in A\} \triangleleft H_{q}(C)}
$$

$$
\begin{aligned}
H_{q}(C)= & \operatorname{ker}\left(\partial_{q}\right) \operatorname{Im}\left(\partial_{q+1}\right) \\
& \text { Cycle Bord }
\end{aligned}
$$

Homologie simpliciale

Groupes finiment engendrés:

$$
H_{q}(C) \simeq \mathbb{Z}^{\beta_{q}} \times \mathbb{Z} / \lambda_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / \lambda_{n} \mathbb{Z}
$$

* $\beta_{q} \in \mathbb{N}$: nombres de Betti
* $\lambda_{i} \in \mathbb{Z}$ avec $\lambda_{i} \mid \lambda_{i+1}$: coefficients de torsion
* Générateurs d'homologie

Homologie simpliciale

$$
B_{0}=2
$$

β_{0} : nombre de composantes connexes

β_{2} : nombre de cavités

Homologie algorithmique

$$
H_{q}(C) ? ? ?
$$

Homologie algorithmique

$$
x=\sum_{i=0}^{\infty}(-1)^{i} \beta_{i}
$$

Que calculer?

Homologie
Niveau 0 : Caractéristique d'Euler-Poincaré
Niveau 1 : Nombres de Betti
Niveau 2: Décomposition en facteurs invariants
$\mathbb{Z}^{\beta_{q}} \times \mathbb{Z} / \lambda_{1} \mathbb{Z} \times \mathbb{Z} / \lambda_{2} \mathbb{Z} \times \cdots$
Niveau 3 : Facteurs invariants et générateurs

$$
\mathbb{Z}\left[z_{1}\right] \times \cdots \times \mathbb{Z}\left[z_{b_{q}}\right] \times \mathbb{Z} \mid \lambda_{1} \mathbb{Z}\left[c_{1}\right] \times \mathbb{Z} / \lambda_{2} \mathbb{Z}\left[c_{2}\right] \times \cdots
$$

Homologie algorithmique

Galoul de /'homologie

Forme normale de Smith

* Algébrique

* Combinatoire
* Géométrique

Réduction

Complexe de chaînes

Matrice de bord

	ν_{0}	ν_{1}	ν_{2}	V_{3}	e_{0}	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	f_{0}	f_{1}	f_{2}	f_{3}
ν_{0}					1			1		1				
v_{1}					-1	1	1							
v_{2}							-1		1	-1				
ν_{3}						-1		-1	-1					
e_{0}											-1		-1	
e_{1}											-1	1		
e_{2}												-1	-1	
e_{3}											1			1
e_{4}												-1		-1
e_{5}													1	-1
f_{0}														
f_{1}														
f_{2}														
$\sqrt{3}$														

Complexe cubique

$$
\partial_{q}([x, \delta])=\sum_{i=1}^{n}-1^{o(i)}\left(\left[x+\delta_{i} e_{i}, \delta-\delta_{i} e_{i}\right]-\left[x, \delta-\delta_{i} e_{i}\right]\right)
$$

où $o(i)$ désigne le nombre de 1 dans $\left(\delta_{1}, \ldots, \delta_{i}\right)$

Forme Normale de Smith

Théorème
Soit $M \in \mathcal{M}_{m \times n}(\mathbb{Z})$
Il existe U, V deux matrices inversibles telles que:

Forme Normale de Smith

Théorème
Soit $M \in \mathcal{M}_{m \times n}(\mathbb{Z})$
Il existe U, V deux matrices inversibles telles que:

Si A est un corps

Forme Normale de Smith

Théorème
Il existe \mathscr{B}, \mathscr{C} deux bases telles que:

$$
\mathbb{M}_{\mathscr{B}, \mathscr{C}}\left(\partial_{q}\right) \sim
$$

Forme Normale de Smith

Théorème
Il existe \mathscr{B}, \mathscr{C} deux bases telles que:

$$
M_{\mathscr{B}, 6}\left(\partial_{q}\right) \sim
$$

Forme Normale de Smith

Théorème
Il existe \mathscr{B}, \mathscr{C} deux bases telles que:

Homologie persistante
 * Introduite indépendamment [2008-2011]

* Frosini et Ferri (Bologne, Italie),
* Robins (Colorado, USA)
* Edelsbrunner (Caroline du Nord, USA)

Homologie persistante

$\beta_{0}=1$ $\beta_{1}=2$ $\beta_{2}=1$

Homologie persistante

$$
\begin{aligned}
& \beta_{0}=1 \\
& \beta_{1}=2 \\
& \beta_{2}=1
\end{aligned}
$$

Homologie persistante

Tame function:

- Nombre fini de valeurs critiques
- $\forall k, t \quad H_{k}\left(\mathscr{M}_{t}\right)$ de dim finie

Homologie persistante

Points critiques

Homologie persistante

$$
\begin{aligned}
& \beta_{0}^{t}=0 \\
& \beta_{1}^{t}=0 \\
& \beta_{2}^{t}=0
\end{aligned}
$$

M_{t}

Homologie persistante

$$
\begin{aligned}
& \beta_{0}^{t}=1 \\
& \beta_{1}^{t}=0 \\
& \beta_{2}^{t}=0
\end{aligned}
$$

$v_{0}: t_{0} \rightarrow \cdots$

Homologie persistante

$$
\begin{aligned}
& \beta_{0}^{t}=1 \\
& \beta_{1}^{t}=1 \\
& \beta_{2}^{t}=0
\end{aligned}
$$

Homologie persistante

Homologie persistante

M_{t}

Homologie persistante

M_{t}

Homologie persistante

$$
\alpha_{0}: t_{1} \rightarrow \cdots
$$

$$
\alpha_{1}: t_{2} \rightarrow t_{3}
$$

$$
\begin{aligned}
& \beta_{0}^{t}=2 \\
& \beta_{1}^{t}=1 \\
& \beta_{2}^{t}=0
\end{aligned}
$$

$$
\begin{aligned}
& v_{0}: t_{0} \rightarrow \cdots \\
& v_{1}: t_{4} \rightarrow \cdots
\end{aligned}
$$

Homologie persistante

$$
\begin{aligned}
& \beta_{0}^{t}=1 \\
& \beta_{1}^{t}=1 \\
& \beta_{2}^{t}=0
\end{aligned}
$$

M_{t}

Homologie persistante

$$
\begin{aligned}
& \beta_{0}^{t}=1 \\
& \beta_{1}^{t}=1 \\
& \beta_{2}^{t}=0
\end{aligned}
$$

$$
\begin{aligned}
& v_{0}: t_{0} \rightarrow \cdots \\
& v_{1}: t_{4} \rightarrow t_{5} \\
& \alpha_{0}: t_{1} \rightarrow \cdots \\
& \alpha_{1}: t_{2} \rightarrow t_{3}
\end{aligned}
$$

Homologie persistante

Homologie persistante

$$
\begin{aligned}
& \beta_{0}^{t}=1 \\
& \beta_{1}^{t}=2 \\
& \beta_{2}^{t}=1
\end{aligned}
$$

$$
\begin{aligned}
& v_{0}: t_{0} \rightarrow \cdots \\
& v_{1}: t_{4} \rightarrow t_{5} \\
& \alpha_{0}: t_{1} \rightarrow \cdots \\
& \alpha_{1}: t_{2} \rightarrow t_{3} \\
& \alpha_{2}: t_{6} \rightarrow \cdots
\end{aligned}
$$

$$
\sigma_{0}: t_{7} \rightarrow \cdots
$$

Homologie persistante

$$
\begin{aligned}
& v_{0}: t_{0} \rightarrow \infty \\
& v_{1}: t_{4} \rightarrow t_{5} \\
& \alpha_{0}: t_{1} \rightarrow \infty \\
& \alpha_{1}: t_{2} \rightarrow t_{3} \\
& \alpha_{2}: t_{6} \rightarrow \infty \\
& \sigma_{0}: t_{7} \rightarrow \infty \\
& \text { Intervalles } \\
& \text { de persistance }
\end{aligned}
$$

Homologie persistante

Dim 0
Dim 1
Dim 2

Homologie persistante

Dim 0
Dim 1
Dim 2

Homologie persistante

Tame function:

- Nombre fini de valeurs critiques
- $\forall k, t \quad H_{k}\left(\mathscr{M}_{t}\right)$ de dim finie

Théorème de stabilité

Stabilité de l'homologie persistante au «bruit»

Distance de Hausdorff
$\mathrm{d}_{H}(X, Y)=\max \left\{\sup _{x \in X} \mathrm{~d}(x, Y), \sup _{y \in Y} \mathrm{~d}(y, X)\right\}$

Théorème de stabilité

Stabilité de l'homologie persistante au «bruit»

Distance «Bottleneck» entre deux diagrammes
$\mathrm{d}_{B}(X, Y)=\inf \sup \|x-\phi(x)\|_{\infty} \quad \phi: X \underset{\rightarrow}{ } Y$
中 $x \in X$

$$
\mathrm{d}_{H}(X, Y) \leqslant \mathrm{d}_{B}(X, Y)
$$

Extrait de «Stability of persistence diagrams ».
D. Cohen-Steiner, M. Edelsbrunner, J. Harer

Théorème de stabilité

Théorème
X espace triangularisable et f, g deux «tame functions»

$$
\mathrm{d}_{B}(D(f), D(g)) \leqslant\|f-g\|_{\infty}
$$

Quelques applications

Sélectionner des applications est difficile tant il y en a ...

Homologie
persistante

Retrouver des contours à partir d'un nuage de points

[^0]
Traitement d'images

Visualiser/suivre la formation de «doigts » dans un écoulement d'eau salée

[^1]
Visualiser/suivre la formation de «doigts » dans un écoulement d'eau salée

[^2]
Visualisation scientifique

Iraitement d'images

Analyse de formes

Homologie
persistante

«Mesurer» les trous d'ur

«Two Measures for the Homology Groups of Binary Volumes », A. Gonzalez-Lorenzo, A. Bac, J.L. Mari, P. Real

«Mesurer» les trous d'un objet

http://chomp.rutgers.edu/Projects/Topological_Data_Analysis.html

Robotique

Visualisation

 scientifiqueTraitement d'images

Analyse de la musique

Etude des réseaux dimension

 mobiles
Données de grande

Etude des formes de diabète

Analyse de données de grande dimension, réduction dimensionnelle

Etude de Miller-Reaven sur le diabète

Ensemble de points $X \subseteq \mathbb{R}^{n}$

Fonctions de filtrage
$f_{i}: X \rightarrow \mathbb{R}$

6 paramètres :

- age
- relative weight
- fasting plasma glucose
- area under the plasma glucose curve for the 3 h glucose tolerance test,
- area under the plasma insulin curve
- steady state plasma glucose response

Approche multirésolution

[^3]
[^0]: «Auto-completion of Contours in Sketches, Maps and Sparse 20 Images Based on Topological Persistence», V. Kurlin

[^1]: «Visualizing Ensembles of Viscous Fingers», G. Favelier, C. Gueunet, J. Tierny

[^2]: «Visualizing Ensembles of Viscous Fingers », G. Favelier, C. Gueunet, J. Tierny

[^3]: «Topology and dała», G. Carlsson

