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Introduction



Topologie algébrique 
et GDMM

Topologie 
« forme » d’un espace à déformation continue près - 
indépendamment de la géométrie (Euler - 1736)

Homéomorphisme 
 bijective, 

continue,  continue
f : E → F

f −1



Invariants topologiques 

Topologie algébrique 
et GDMM

Topologie 
« forme » d’un espace à déformation continue près - 
indépendamment de la géométrie (Euler - 1736)

Composantes 
connexes

…



Topologie algébrique 
et GDMM

Topologie

Topologie algébrique 
et GDMM

Algèbre
Topologie algébrique

Objet algébrique (groupe)Objet

Propriétés du groupe 
reflètent celles de l’objet



Topologie algébrique
Topologie algébrique

1er groupe fondamental 
- 

Groupes d’homotopie
Homologie

Calcul ?



Topologie algébrique
Topologie algébrique

1er groupe fondamental 
- 

Groupes d’homotopie
Homologie

Th. Seifert-Van Kampen 

X = X1 ∪ X2 X1 ∩ X2 connexe par arc

π1(X) = (π1(X1) ⋆ π1(X2))/N

Présentation de groupe :



Topologie algébrique
Topologie algébrique

1er groupe fondamental 
- 

Groupes d’homotopie
Homologie

Th. Seifert-Van Kampen 
π1(X) = ⟨α1, β1, α2, β2 |

α1β1α−1
1 β−1

1 , α2β2α−1
2 β−1

2 ⟩



Topologie algébrique
Topologie algébrique

1er groupe fondamental 
- 

Groupes d’homotopie
Homologie

Théorème de Novikov-Boone  
Représentation d’un groupe  groupe trivial 
non décidable …

≃



Topologie algébrique
Topologie algébrique

1er groupe fondamental 
- 

Groupes d’homotopie
Homologie

Homotopie algorithmique
𝒪(n3)



Plan
1. Homologie simpliciale 

2. Aspects algorithmiques de l’homologie 
simpliciale  [A. Bac] 

3. Persistence homologique [A. Gonzalez Lorenzo] 

4. Exemples d’applications
M2   Informatique et Mathématiques 
Discrètes (M2 IMD) 
Marseille - Luminy 
« Topologie algébrique discrète »

https://pageperso.lis-lab.fr/alexandra.bac/enseignement/styled-18/styled-19/index.html
https://aldo-gonzalez-lorenzo.pedaweb.univ-amu.fr/2020/smacud1l-homologie-persistante.html
https://maths-sciences.univ-amu.fr/master-maap/M2-IMD


Homologie 
Simpliciale



Homologie simpliciale
Objet algébrique (groupe)Objet

Complexe simplicial

Topologie

Trous



Homologie simpliciale

Trous

Cycles Qui ne sont le bord de rien



Homologie simpliciale
Objet algébrique (groupe)Objet

Complexe simplicial

Topologie

Trous
Complexe de chaînes

Cq = Vect(Kq)
Groupes :

 corps ou anneauA

Cn Cn−1 ⋯ C1 C0 0

 : -cellulesKq q
a

b
c

d

λ1a + λ2b + λ3c + λ4dℤ/2ℤ



Homologie simpliciale
Objet algébrique (groupe)Objet

Complexe simplicial

Topologie

Trous
Complexe de chaînes

Cn
∂n Cn−1

∂n−1 ⋯ ∂2 C1
∂2 C0 → 0

 corps ou anneauA

Opérateur de bord : ∂q : Cq → Cq−1



Homologie simpliciale
Objet algébrique (groupe)Objet

Complexe simplicial

Topologie

Trous
Complexe de chaînes

 corps ou anneauA

∂1(e0) = v1 − v0



Homologie simpliciale
Objet algébrique (groupe)Objet

Complexe simplicial

Topologie

Trous
Complexe de chaînes

∂2( f0) = − e1 + e2 − e0

∂1(−e1 + e2 − e0) =
−(v2 − v1) + (v2 − v0) − (v1 − v0)

= 0

Cycle

ker ∂



Homologie simpliciale
Objet algébrique (groupe)Objet

Complexe simplicial

Topologie

Trous
Complexe de chaînes

∂2( f0) = − e1 + e2 − e0

∂1(−e1 + e2 − e0) =
−(v2 − v1) + (v2 − v0) − (v1 − v0)

= 0

Bord

Im ∂



Homologie simpliciale
Objet algébrique (groupe)Objet

Complexe simplicial

Topologie

Trous
Complexe de chaînes

∂2( f0) = − e1 + e2 − e0

∂1(−e1 + e2 − e0) =
−(v2 − v1) + (v2 − v0) − (v1 − v0)

= 0
Bords  cycles⊆



Homologie simpliciale
Objet algébrique (groupe)Objet

Complexe simplicial

Topologie

Trous
Complexe de chaînes

∂2( f0) = − e1 + e2 − e0

∂1(−e1 + e2 − e0) =
−(v2 − v1) + (v2 − v0) − (v1 − v0)

= 0
Im ∂q+1 ⊆ ker ∂q



Homologie simpliciale
Objet algébrique (groupe)Objet

Complexe simplicial

Topologie

Trous
Complexe de chaînes

Cn
∂n Cn−1

∂n−1 ⋯ ∂2 C1
∂2 C0 → 0

∂q∂q−1 = 0 ∀q

Opérateur de bord : ∂q : Cq → Cq−1



Homologie simpliciale
Objet algébrique (groupe)Objet

Complexe simplicial

Topologie

Trous
Complexe de chaînes

-ème groupe d’homologieq

Hq(C) = ker(∂q)/Im (∂q+1)

Cn
∂n Cn−1

∂n−1 ⋯ ∂2 C1
∂2 C0 → 0



Homologie simpliciale
Objet algébrique (groupe)Objet

Complexe simplicial

Topologie

Trous
Complexe de chaînes

-ème groupe d’homologieq

Hq(C) = ker(∂q)/Im (∂q+1)

Cn
∂n Cn−1

∂n−1 ⋯ ∂2 C1
∂1 C0 → 0

BordCycle



Homologie simpliciale

Hq(C) = ker(∂q)/Im (∂q+1)

BordCycle

α ∼ β    si    β − α ∈ Im (∂q+1)

α



Homologie simpliciale

Hq(C) = ker(∂q)/Im (∂q+1)

BordCycle

α ∼ β    si    β − α ∈ Im (∂q+1)

α

τ

α = 0 + ∂2(τ)

α ∼ 0



Homologie simpliciale

Hq(C) = ker(∂q)/Im (∂q+1)

BordCycle

α ∼ β    si    β − α ∈ Im (∂q+1)

α

α ?



Homologie simpliciale

Hq(C) = ker(∂q)/Im (∂q+1)

BordCycle

α ∼ β    si    β − α ∈ Im (∂q+1)

τ

β = α + ∂2(τ)

α ∼ β
α

β



Homologie simpliciale

Hq(C) = ker(∂q)/Im (∂q+1)

BordCycle

α ∼ β    si    β − α ∈ Im (∂q+1)

τ

β = α + ∂2(τ)

α ∼ β
α

β

 classe ∙α
{λ ⋅ ∙α ; λ ∈ A} ◃ Hq(C)

 générateurα



Homologie simpliciale
Groupes finiment engendrés : 

 

 

Générateurs d’homologie

βq ∈ ℕ :  nombres de Betti

λi ∈ ℤ avec λi |λi+1 :  coefficients de torsion

Hq(C) ≃ ℤβq × ℤ/λ1ℤ × ⋯ × ℤ/λnℤ



Homologie simpliciale

 : nombre de composantes connexesβ0

β0 = 2

 : nombre de tunnelsβ1

β1 = 5

 : nombre de cavitésβ2

β2 = 1



Homologie 
algorithmique

Hq(C) ???



Homologie algorithmique

HomologieQue calculer ?

Niveau 0 : Caractéristique d'Euler-Poincaré 

Niveau 1 : Nombres de Betti  

Niveau 2 : Décomposition en facteurs invariants 
 

Niveau 3 : Facteurs invariants et générateurs 
     

ℤβq × ℤ/λ1ℤ × ℤ/λ2ℤ × ⋯

ℤ[z1] × ⋯ × ℤ[zbq
] × ℤ/λ1ℤ[c1] × ℤ/λ2ℤ[c2] × ⋯

χ =
∞

∑
i=0

(−1)iβi



Calcul de l’homologie

Forme normale 
de Smith 

Algébrique

Théorie de 
Morse discrète

Combinatoire 
Géométrique

Homologie 
effective

Réduction

Homologie algorithmique



Complexe de chaînes
Matrice de bord

1 1 1
-1 1 1

-1 1 -1
-1 -1 -1

-1 -1
-1 1

-1 -1
1 1

-1 -1
1 -1

v0 v1 v2 v3 e0 e1 e2 e3 e4 e5 f0 f1 f2 f3v0v1v2v3e0e1e2e3e4e5
f0f1f2f3



Complexe cubique
∂q([x, δ]) =

n

∑
i=1

− 1o(i) ([x + δiei, δ − δiei] − [x, δ − δiei])

où  désigne le nombre de 1 dans o(i) (δ1, …, δi)

∂[(1,0,0), (1,1,0)] =

−([(2,0,0), (0,1,0)] − [(1,0,0), (0,1,0)])

+([(1,1,0), (1,0,0)] − [(1,0,0), (1,0,0)])



Forme Normale de Smith
Théorème 
Soit   
Il existe  deux matrices inversibles telles que :

M ∈ ℳm×n(ℤ)
U, V

b1

⋱
bl bi |bi+1

b2

⋱

0

0
0

00

UMV =



Forme Normale de Smith
Théorème 
Soit   
Il existe  deux matrices inversibles telles que :

M ∈ ℳm×n(ℤ)
U, V

⋱
⋱

0

0
0

00

UMV =

Si  est un corpsA1
1

1



Forme Normale de Smith
Théorème 
Il existe  deux bases telles que :ℬ, 𝒞

⋱
⋱

0

0
0

00

ℳℬ,𝒞(∂q) ∼

1
1

1 Hq(C) =
ker(∂q)/Im (∂q+1)

ℬ = {e1, …, en}
𝒞 = {e′ 1, …, e′ m}

f(e1) f(ek)
f(ek+1) f(en)

⋯
⋯

ker(∂q)

e′ 1

e′ k

e′ k+1

e′ n



Forme Normale de Smith

⋱
⋱

0

0
0

00

ℳℬ,𝒞(∂q) ∼

1
1

1

ℬ = {e1, …, en}
𝒞 = {e′ 1, …, e′ m}

f(e1) f(ek)
f(ek+1) f(en)

⋯
⋯

Im(∂q) = rang(∂q)

e′ 1

e′ k

e′ k+1

e′ n

Hq(C) =
ker(∂q)/Im (∂q+1)

Théorème 
Il existe  deux bases telles que :ℬ, 𝒞



Base : 
{b1e′ 1, …, bke′ k}

Forme Normale de Smith

b1

⋱
bl

bi |bi+1

b2

⋱

0

0
0

00

UAV =

f(e1) f(ek)
f(ek+1) f(en)

⋯
⋯

e′ 1

e′ k

e′ k+1

e′ n

Im(∂q)

Bord faible

Théorème 
Il existe  deux bases telles que :ℬ, 𝒞

Si  est un anneauA



Homologie 
algorithmique

Calcul de 
l’homologie

Générateurs Calcul efficace 

Calcul 
incrémental

Mayer-Vietoris, lemme 
des perturbations 

Théorie de 
Morse discrète

SNF, réduction

𝒪(n3) 𝒪(n2)



Homologie 
persistante

Introduite indépendamment  [2008-2011] 

Frosini et Ferri (Bologne, Italie),  

Robins (Colorado, USA)  

Edelsbrunner (Caroline du Nord, USA) 



Homologie persistante

ℳ

 
 

β0 = 1
β1 = 2
β2 = 1



Homologie persistante

ℳ

 
 

β0 = 1
β1 = 2
β2 = 1



Homologie persistante

t

ℳt = f −1(] − ∞, t])

Tame function : 
• Nombre fini de valeurs 

critiques 
•  de dim finie ∀k, t Hk(ℳt)

f : ℳ → ℝ



Homologie persistante

t0
t1
t2
t3

Points critiques

t4

t5

t6

t7



Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7

t

 
 

βt
0 = 0

βt
1 = 0

βt
2 = 0

ℳt



Dim 2
Dim 1

Dim 0

Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7

t 
 

βt
0 = 1

βt
1 = 0

βt
2 = 0

v0

ℳt

v0 : t0 → ⋯



Dim 2
Dim 1

Dim 0

Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7

t 
 

βt
0 = 1

βt
1 = 1

βt
2 = 0

v0
α0

ℳt

v0 : t0 → ⋯

α0 : t1 → ⋯



Dim 2
Dim 1

Dim 0

Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7

t

 
 

βt
0 = 1

βt
1 = 2

βt
2 = 0

v0
α0

α1

ℳt

v0 : t0 → ⋯

α0 : t1 → ⋯
α1 : t2 → ⋯



Dim 2
Dim 1

Dim 0

Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7

t

 
 

βt
0 = 1

βt
1 = 1

βt
2 = 0

v0
α0

ℳt

v0 : t0 → ⋯

α0 : t1 → ⋯
α1 : t2 → ⋯

Fusion



Dim 2
Dim 1

Dim 0

Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7

t

 
 

βt
0 = 1

βt
1 = 1

βt
2 = 0

v0
α0

ℳt

v0 : t0 → ⋯

α0 : t1 → ⋯
α1 : t2 → t3



Dim 2
Dim 1

Dim 0

Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7

t

 
 

βt
0 = 2

βt
1 = 1

βt
2 = 0

v0
α0

v1

ℳt

v0 : t0 → ⋯

α0 : t1 → ⋯
α1 : t2 → t3

v1 : t4 → ⋯



Dim 2
Dim 1

Dim 0

Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7

t

 
 

βt
0 = 1

βt
1 = 1

βt
2 = 0

v0
α0

ℳt

v0 : t0 → ⋯

α0 : t1 → ⋯
α1 : t2 → t3

v1 : t4 → ⋯



Dim 2
Dim 1

Dim 0

Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7

t

 
 

βt
0 = 1

βt
1 = 1

βt
2 = 0

v0
α0

ℳt

v0 : t0 → ⋯

α0 : t1 → ⋯
α1 : t2 → t3

v1 : t4 → t5



Dim 2
Dim 1

Dim 0

Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7 t

 
 

βt
0 = 1

βt
1 = 2

βt
2 = 0

v0
α0

α2

ℳt

v0 : t0 → ⋯

α0 : t1 → ⋯
α1 : t2 → t3

v1 : t4 → t5

α2 : t6 → ⋯



Dim 2
Dim 1

Dim 0

Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7
t

 
 

βt
0 = 1

βt
1 = 2

βt
2 = 1

v0
α0

α2

ℳt

v0 : t0 → ⋯

α0 : t1 → ⋯
α1 : t2 → t3

v1 : t4 → t5

α2 : t6 → ⋯

σ0

σ0 : t7 → ⋯



Dim 2
Dim 1

Dim 0

Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7
t

 
 

βt
0 = 1

βt
1 = 2

βt
2 = 1

v0
α0

α2

ℳt

v0 : t0 → ∞

α0 : t1 → ∞
α1 : t2 → t3

v1 : t4 → t5

α2 : t6 → ∞

σ0

σ0 : t7 → ∞

Intervalles 
de persistance



Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7

∞

t0 t1 t2 t3 t4 t5 t6 t7

Dim 0
Dim 1
Dim 2



Homologie persistante

t0
t1
t2
t3
t4

t5

t6

t7

∞

t0 t1 t2 t3 t4 t5 t6 t7

Dim 0
Dim 1
Dim 2



Homologie persistante

ℳt

t

f : ℳ → ℝ

Tame function : 
• Nombre fini de valeurs 

critiques 
•  de dim finie ∀k, t Hk(ℳt)



Théorème de stabilité
Stabilité de l’homologie persistante au « bruit »

Distance de Hausdorff 

dH(X, Y) = max {sup
x∈X

d(x, Y), sup
y∈Y

d(y, X)}



Théorème de stabilité
Stabilité de l’homologie persistante au « bruit »

Distance « Bottleneck » entre deux diagrammes 
dB(X, Y) = inf

ϕ
sup
x∈X

∥x − ϕ(x)∥∞ ϕ : X →̃ Y

Extrait de « Stability of persistence diagrams ».  
D. Cohen-Steiner, M. Edelsbrunner, J. Harer

dH(X, Y) ⩽ dB(X, Y)



Théorème de stabilité
Théorème 

 espace triangularisable et  deux « tame functions » 𝕏 f, g

dB(D( f ), D(g)) ⩽ ∥f − g∥∞



Quelques applications

Sélectionner des applications est difficile tant il y en a …



Homologie 
persistante

Traitement 
d’images



Informatique 
graphique

Reconnaissance 
de formes

Analyse de 
formes

Analyse de 
données

« Auto-completion of Contours in Sketches, Maps and Sparse 2D Images Based on Topological Persistence », V. Kurlin

-complexeα

Pixel-based segmentation is a traditional approach to
find boundary contours in an image based on a regular grid
of pixels. Such a segmentation usually minimizes an energy
function that contains a cost of assigning a single label
and a cost of assigning two different labels to neighboring
pixels. The resulting minimization problem is often NP-hard.
Including higher-order potential between more than two pixels
has even larger computational costs and still encodes only
local properties. Chen et al. [4] suggested the first algorithm
for a binary segmentation with global topological constraints,
namely a foreground object is connected and has no holes.

Persistence-based clustering is an excellent method of
Skraba et al. [12] using the 0-dimensional persistence. Their
problem is to segment a cloud into bases of attraction of a
function. Then given points essentially form final regions and
do not bound them as in our problem for finding closed con-
tours. So the inputs in their problem and ours are complemen-
tary, which is formalized as a duality between persistence in
dimensions 0 and 1 in Lemma 14. Hence a direct comparison
of their output with our approach seems impossible.

Input scale parameters are essentially needed for many
algorithms including the image segmentation using topological
persistence by Letscher and Fritts [10]. Similarly to our
method, for a given point cloud C, a Delaunay triangulation
is built on C. Then small triangles are merged into persistent
regions using two given threshold parameters: ↵ for the radius
of disks centered at the points of C, and p for the desired
level of persistence. We extend this method and avoid the input
parameters by using stability of 1-dimensional persistence.

Fig. 2. A cloud C and its (non-unique) Delaunay triangulation Del(C)

Fast 1-dimensional persistence for point clouds in the
plane can be computed by the standard algorithm of Attali et
al. [1]. This approach was applied by Kurlin [9] for counting
topologically persistent holes in noisy clouds. However, the
1-dimensional persistence diagram contains only unstructured
data. A segmentation of a cloud requires more information
about neighboring relations of persistent regions. So we extend
this fast algorithm from [1] by adding a more complicated data
structure Map(↵), which allows us to merge all regions into
most persistent ones, see section V and Theorem 15.

Homology inference conditions were obtained in many
cases to guarantee a correct topological reconstruction from a
sample. Our Theorem 20 says that the true number of contours
in an unknown graph G can be found from a noisy sample C
without using the bound " of noise, hence doesn’t follow from
[3, section 5.2]. Indeed, [3, Theorem 4.7] requires counting
homology classes that live between given bounds " and 3".
Our earlier algorithm [5] for a graph reconstruction from a
noisy sample in the plane also used the noise parameter ".

D. Contributions: Parameterless Algorithm and Guarantees

The key differences between our new approach and the
known segmentation methods above are the following.

• We solve the harder problem of completing contours or
segmenting a cloud of points with real coordinates in R2.

• The only input is a point cloud without extra parameters.
The algorithm is unsupervised and requires no training data.

• Quality of contours is measured by topological persistence.
Hence all contours form a natural data-driven hierarchy.

Arbitrary clouds of points are taken as the input. So
our method works for any feature points that can be placed
between usual pixels on a regular grid. A hierarchy of closed
contours will be produced for any input.

No scale parameters are needed, because we analyze a
given cloud at all values of the radius ↵. The 1st output consists
of those contours whose persistence is above a 1st widest gap
in a persistence diagram, see Definition 7. The 2nd output has
contours with a persistence above a 2nd widest gap etc.

Data-driven measurements are used for quantifying per-
sistence of contours. If a point cloud C lives in a metric space,
then we have only a distance function for studying a shape of
C. So a natural representation of such a shape is the offset C↵,
which is a neighborhood of C whose width is a scale parameter
↵ > 0. This complicated offset C↵ continuously deforms to the
simpler ↵-complex C(↵), see Fig. 3, Definition 3, Lemma 4.

Fig. 3. The ↵-offset C↵ deforms to the ↵-complex C(↵) at ↵ =
p
2.

The persistence of a contour is its life span in the
ascending filtration of offsets C↵. When ↵ is increasing, a
contour can be born at ↵ = birth and can die in a larger
offset at ↵ = death. So the persistence is death� birth, see
Definition 6. For instance one long contour is born in C

p
2,

see Fig. 3. Another short contour is born in C2, see Fig. 4.

Fig. 4. The ↵-offset C↵ deforms to the ↵-complex C(↵) at ↵ = 2.

Here is a high-level description of our key contributions.

2

Pixel-based segmentation is a traditional approach to
find boundary contours in an image based on a regular grid
of pixels. Such a segmentation usually minimizes an energy
function that contains a cost of assigning a single label
and a cost of assigning two different labels to neighboring
pixels. The resulting minimization problem is often NP-hard.
Including higher-order potential between more than two pixels
has even larger computational costs and still encodes only
local properties. Chen et al. [4] suggested the first algorithm
for a binary segmentation with global topological constraints,
namely a foreground object is connected and has no holes.

Persistence-based clustering is an excellent method of
Skraba et al. [12] using the 0-dimensional persistence. Their
problem is to segment a cloud into bases of attraction of a
function. Then given points essentially form final regions and
do not bound them as in our problem for finding closed con-
tours. So the inputs in their problem and ours are complemen-
tary, which is formalized as a duality between persistence in
dimensions 0 and 1 in Lemma 14. Hence a direct comparison
of their output with our approach seems impossible.

Input scale parameters are essentially needed for many
algorithms including the image segmentation using topological
persistence by Letscher and Fritts [10]. Similarly to our
method, for a given point cloud C, a Delaunay triangulation
is built on C. Then small triangles are merged into persistent
regions using two given threshold parameters: ↵ for the radius
of disks centered at the points of C, and p for the desired
level of persistence. We extend this method and avoid the input
parameters by using stability of 1-dimensional persistence.

Fig. 2. A cloud C and its (non-unique) Delaunay triangulation Del(C)

Fast 1-dimensional persistence for point clouds in the
plane can be computed by the standard algorithm of Attali et
al. [1]. This approach was applied by Kurlin [9] for counting
topologically persistent holes in noisy clouds. However, the
1-dimensional persistence diagram contains only unstructured
data. A segmentation of a cloud requires more information
about neighboring relations of persistent regions. So we extend
this fast algorithm from [1] by adding a more complicated data
structure Map(↵), which allows us to merge all regions into
most persistent ones, see section V and Theorem 15.

Homology inference conditions were obtained in many
cases to guarantee a correct topological reconstruction from a
sample. Our Theorem 20 says that the true number of contours
in an unknown graph G can be found from a noisy sample C
without using the bound " of noise, hence doesn’t follow from
[3, section 5.2]. Indeed, [3, Theorem 4.7] requires counting
homology classes that live between given bounds " and 3".
Our earlier algorithm [5] for a graph reconstruction from a
noisy sample in the plane also used the noise parameter ".

D. Contributions: Parameterless Algorithm and Guarantees

The key differences between our new approach and the
known segmentation methods above are the following.

• We solve the harder problem of completing contours or
segmenting a cloud of points with real coordinates in R2.

• The only input is a point cloud without extra parameters.
The algorithm is unsupervised and requires no training data.

• Quality of contours is measured by topological persistence.
Hence all contours form a natural data-driven hierarchy.

Arbitrary clouds of points are taken as the input. So
our method works for any feature points that can be placed
between usual pixels on a regular grid. A hierarchy of closed
contours will be produced for any input.

No scale parameters are needed, because we analyze a
given cloud at all values of the radius ↵. The 1st output consists
of those contours whose persistence is above a 1st widest gap
in a persistence diagram, see Definition 7. The 2nd output has
contours with a persistence above a 2nd widest gap etc.

Data-driven measurements are used for quantifying per-
sistence of contours. If a point cloud C lives in a metric space,
then we have only a distance function for studying a shape of
C. So a natural representation of such a shape is the offset C↵,
which is a neighborhood of C whose width is a scale parameter
↵ > 0. This complicated offset C↵ continuously deforms to the
simpler ↵-complex C(↵), see Fig. 3, Definition 3, Lemma 4.

Fig. 3. The ↵-offset C↵ deforms to the ↵-complex C(↵) at ↵ =
p
2.

The persistence of a contour is its life span in the
ascending filtration of offsets C↵. When ↵ is increasing, a
contour can be born at ↵ = birth and can die in a larger
offset at ↵ = death. So the persistence is death� birth, see
Definition 6. For instance one long contour is born in C

p
2,

see Fig. 3. Another short contour is born in C2, see Fig. 4.

Fig. 4. The ↵-offset C↵ deforms to the ↵-complex C(↵) at ↵ = 2.
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Here is a high-level description of our key contributions.
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• Fast time: for any n points in R2, a hierarchy of closed
contours is computed in time O(n log n), see Theorem 15.

• Guarantees: if a cloud C is densely sampled from a good
graph G ⇢ R2, all contours of G can be geometrically
approximated by using only the cloud C, see Theorem 20.

II. GRAPHS, TRIANGULATIONS AND ↵-COMPLEXES

Definition 1 (a plane graph, its cycles and contours): A
plane graph is a subset G ⇢ R2 consisting of finitely many
vertices and non-intersecting arcs joining vertices. A cycle

of G is a subset L ⇢ G consisting of edges that connect
neighboring vertices: p1 to p2, p2 to p3 and so on until pk to
p1. A cycle is a closed loop, but may have self-intersections.

A cycle will be called a contour if it encloses a connected
region in the complement R2�G. The boundary of the external
region in R2 �G is the boundary contour of G.

If every bounded region in the complement R2 � G of a
plane graph is a triangle, then the graph G defines a trian-
gulation on its vertices. The following Delaunay triangulation
Del(C) is a fast and small structure on a cloud C ⇢ R2.

Definition 2 (Delaunay triangulation): For a cloud C =
{p1, . . . , pn} ⇢ R2 of n points, a Delaunay triangulation

Del(C) has all triangles with vertices pi, pj , pk 2 C whose
circumcircle doesn’t enclose any other points of C, see Fig. 2.

A Delaunay triangulation is not unique if C contains 4
points on the same circle. The boundary edges of Del(C) form
the convex hull(C) of C. The complement R2 � hull(C) will
be called the external region. If Del(C) has k triangles and b
boundary edges, then counting E edges over k triangles gives
3k + b = 2E. By the Euler formula n � E + (k + 1) = 2 in
the plane, we conclude that k = 2n� b� 2, E = 3n� b� 3,
so Del(C) has O(n) edges and triangles. Also Del(C) can be
found in time O(n log n) with O(n) space [2, section 9.1].

A Delaunay triangulation Del(C) is an example of a
general 2-dimensional complex consisting of vertices, edges
and triangles in R2. To study the shape of a cloud C at different
scales, we shall define subcomplexes that contain the elements
of Del(C) whose sizes are bounded above by a fixed radius
↵. It will be convenient to re-define a Delaunay triangulation
Del(C) in terms of Voronoi cells, which are neighborhoods of
points p 2 C and will be used for building the ↵-complex.

For a point pi 2 C, the Voronoi cell consists of all points
q 2 R2 that are closer to pi than to all other points of C,
so V (pi) = {q 2 R2 : d(pi, q)  d(pj , q) 8j 6= i}. Then a
Delaunay triangulation Del(C) consists of all triangles with
vertices p, q, r 2 C such that V (p)\V (q)\V (r) is not empty.
If the Voronoi cells are restricted to a scale ↵ > 0, we get the
↵-complexes C(↵). For any p 2 R2 and ↵ > 0, denote by
B(p;↵) the closed disk with the center p and radius ↵.

Definition 3 (↵-complexes): For a finite cloud C ⇢ R2,
the ↵-complex C(↵) ⇢ R2 contains all edges between points
p, q 2 C such that V (p) \ B(p;↵) meets V (q) \ B(q;↵),
see [8, section III.4]. Similarly, the ↵-complex C(↵) contains
all triangles with vertices p, q, r such that the full intersection
V (p) \B(p;↵) \ V (q) \B(q;↵) \ V (r) \B(r;↵) 6= ;.

A hole of C(↵) is a connected region in R2 � C(↵). The
boundaries of all holes are boundary contours of C(↵).

If ↵ > 0 is small, C(↵) consists of all isolated points of
C. For any large enough ↵, the complex C(↵) is Del(C). So
all ↵-complexes form a sequence of nested complexes, called
a filtration C = C(0) ⇢ · · · ⇢ C(↵) ⇢ · · · ⇢ C(+1) =
Del(C). So Del(C) is built on isolated points of C by adding
edges and triangles at the following critical values:

• an edge between points pi, pj is added at ↵ = 1
2d(pi, pj);

• an acute triangle (that has all angles less than ⇡
2 ) is added at

the critical value ↵ equal to the circumradius of the triangle;

• a non-acute triangle is added to C(↵) at the scale ↵ that is
equal to the half-length of the largest side in the triangle.

Fig. 5. The ↵-complexes C(↵) of the cloud C in Fig. 2 for ↵ =
p
5, 2.5.

The ↵-complex C(
p
5) ⇢ R2 in Fig. 5 has 3 holes bounded

by 3 independent cycles that generate the group H1 = Z3
2.

The rightmost hole is the triangle with sides 2
p
2, 2

p
5, 2

p
5,

which are in C(↵) at ↵ =
p
5. This acute triangle has the

circumradius R3 = 5
3

p
2 ⇡ 2.357 and enters C(↵) at ↵ = R3.

So the rightmost hole persists only over
p
5  ↵ < R3.

The leftmost hole in the complex C(
p
5) ⇢ R2 from Fig. 5

is the triangle with sides 4, 2
p
5, 2

p
5. This hole appears in

C(↵) earlier at ↵ = 2 as a square in Fig. 4. The triangle has
the circumradius R2 = 2.5 and enters C(↵) at ↵ = 2.5. So
the leftmost hole persists over the interval 2  ↵ < 2.5.

The following lemma actually motivates the concept of the
↵-complex, which is a simpler object than the ↵-offset C↵.

Lemma 4: [7] For any scale ↵, the ↵-offset C↵ of a cloud
C ⇢ R2 continuously deforms to the ↵-complex C(↵) ⇢ R2.

III. PERSISTENT HOMOLOGY AND ITS STABILITY

The persistent homology is a flagship method of topo-
logical data analysis. The key idea is to study the evolution
of topological invariants in a filtration of complexes {S(↵)}
when a scale ↵ is increasing. For our purposes, the convenient
invariant of a complex S is the homology group H1(S).

Definition 5 (homology group H1): Cycles of a complex
S can be algebraically written as linear combinations of edges
with coefficients 0 or 1 in the group Z2 = Z/2Z = {0, 1}.
The vector space C1 consists of all these linear combinations.
The boundaries of all triangles in S (as cycles of 3 edges)
generate the subspace B1 ⇢ C1. The quotient C1/B1 is the 1-

dimensional homology group H1(S) with the coefficients Z2.

For coefficients Z2, the group H1(S) is a vector space
whose dimension is the first Betti number �1(S) equal to the
number of independent loops in S, so H1(S) = Z�1(S)
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