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Outlines

@ Digital convex Sets in Combinatorics on Words point of view

© Characterizations for removable pixels by preserving the digital convexity

© Characterizations for insertable pixels by preserving the digital convexity

@ The utility of Combinatorics on words for the inflating process
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Digital convexity-DC

Convexity

In R?, a subset R is said to be convex if for any pair of points x,y € R, every
point on the straight line segment joining x and y is also within R.
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Digital convexity-DC

Convexity

In R?, a subset R is said to be convex if for any pair of points x,y € R, every
point on the straight line segment joining x and y is also within R.

(Not directly applicable to subsets in Z?2)

There are several definitions for the digital convexity given by (Minsky, Kim,
Eckhardt , Hubler....)

Under the connectivity assumption, Ekhdart has shown that the different
definitions coincide.

In this presentation, we consider finite and 4-connected sets of Z2.

And we use the definition of digital convexity based on convex hull as follows:

Definition
A finite 4-connected set S of Z?2 is digitally convex if Conv(S)NZ? = S. J
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Terminology

o C C 72, finite 4-connected digital convex set.
° p(x)=x® [%, %]2 pixel region whose centre is x and V(C) = Uxecp(x)
e Bd(V(C)) the topological boundary of V(C); Bd(C)
@ Convex hull of Bd(C), denoted by conv(Bd(C))
l
T
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Main questions
@ For a finite, 4-connected and digitally convex set C of Z? and a point x of C,

we would like to verify if C\ {x} (resp. CU{x}) is still digitally convex
(and 4-connected)
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Main questions

@ For a finite, 4-connected and digitally convex set C of Z? and a point x of C,
we would like to verify if C\ {x} (resp. CU{x}) is still digitally convex
(and 4-connected)

What are the characterizations of insertable and removable pixels for a DC
set?

© What is the process to follow in order to deflate or inflate a DC set?

Our approach to solve these questions is based on Combinatorics on words by
studying the boundary word of C, W(C).
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Boundary word

NO 0
001 1]O
01 1
1 1]o0
YIS0 60t
1 01
0 1
0 0%

The boundary word of DC is W(C) = 10100100101101001010010110.
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The boundary word of DC is W(C) = 10100100101101001010010110.

By applying the Lyndon factorization on W(C), we obtain:
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Boundary word
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0102

The boundary word of DC is W(C) = 10100100101101001010010110.

By applying the Lyndon factorization on W(C), we obtain:
W(C) = (1)(01)(001)0%(10)(110)(1)(00101)(0)*(10)(110)

where each factor is a Christoffel word.
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Theorem (BLPRO09)

A word w € {0,1}* is WN-convex if and only if its Lyndon factorization is unique,
witwg? ... w*, and their factors are all primitive Christoffel words.
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Property

Given a 4-connected digitally convex set C, each vertex of the conv(Bd(C)),
corresponds to the end of each factor of the Lyndon factorization of W/(C).
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Theorem (BLPRO09)

A word w € {0,1}* is WN-convex if and only if its Lyndon factorization is unique,
witwg? ... w*, and their factors are all primitive Christoffel words.

Property

Given a 4-connected digitally convex set C, each vertex of the conv(Bd(C)),
corresponds to the end of each factor of the Lyndon factorization of W/(C).

The red points over W(C) correspond to the Lyndon pixels of V(C).
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Theorem

Given a 4-connected, digitally convex set C of Z?, let us consider its boundary
word W(C) and its Lyndon factorization given by W(C) = 72432 ... £2. A pixel
p(x) for a certain x € C is removable if x is a simple point and p(x) is a Lyndon
pixel.
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Updating W(C)

@ Removing the correct candidate (with any order) affects W(C)
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Updating W(C)

@ Removing the correct candidate (with any order) affects W(C)
@ Lyndon factorization must be modified
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Updating W(C)

@ Removing the correct candidate (with any order) affects W(C)
@ Lyndon factorization must be modified
© Either we loose some Lyndon pixels or we gain others
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© Avoid the choice of the pixel that will lead to a W(C) of the form 1%0'T*0’
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Furthest point

(8.5)
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Furthest point

(8,5)

(0,0)

Q = fu(w), over the Christoffel word of slope 2.
Its corresponding pixel is called the furthest pixel .
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Switching position and local modifications for the inflation
Lemma(Tarsissi et al-17)

Let w = u.v be a Christoffel word of length strictly greater than 1, with v and v
the two Christoffel factors. Switching letters at the furthest point position k of w,
switches the places of the Christoffel words v and v, and we get:

switche(w) = (W, w™) = v.u; where switch(w) = vu, and p(v) > p(u).
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Updating W(C)
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Updating W(C)
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Updating W(C)
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Updating W(C)

NN

a) b)

OR Loosing convexity

Let wy = C(20) and wp = C(2),

switchk(wl)wzzC(%)C(%)C(;); wyswitch () = ( )C( yo(2 )
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Updating W(C)

NN

a) b)

OR Loosing convexity
Let wy = C(20) and wp = C(2),

switchy (wy)wa = C(%)C(%)C(;); wyswitchy (wo) = C(%)C(%)Cé)

11 19 5 H 30 3
E>2—6>?,Whlleﬁ<z.
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Global Digital convexity verification and its algorithm

Theorem

Let W(C) = 47* ... L be a boundary word of a 4-connected digital convex set C.
By switching two letters of the first Christoffel word {1 at the furthest point
position , we obtain two line segments: VoV discretized by {{ and VVy
discretized by 7 7+ 1.

Q Ifty <ty e

Q Ifly =ty (77, ie. 0y is aligned with 7 ¢7*~ 1,

Q Ifly = (47 52~ 1)™ ¢y, with my > 1, then we check the propagation by

concatenating ¢y 6'1’1_1 and {5,

@ Otherwise, we loose the convexity and this point should not be chosen.
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Global Digital convexity verification and its algorithm

Theorem

Let W(C) = 47* ... L be a boundary word of a 4-connected digital convex set C.
By switching two letters of the first Christoffel word {1 at the furthest point
position , we obtain two line segments: VoV discretized by {{ and VVy
discretized by 7 7+ 1.

Q Ifty <ty e

Q Ifly =ty (77, ie. 0y is aligned with 7 ¢7*~ 1,

Q Ifly = (47 52~ 1)™ ¢y, with my > 1, then we check the propagation by

concatenating ¢y 6'1’1_1 and {5,

@ Otherwise, we loose the convexity and this point should not be chosen.

Being a furthest pixel is a sufficient condition for the insertable pixel.
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Theorem:Strong condition to characterize an insertable pixel
Let W(C) = ¢7*...£2 and {; be a primitive Christoffel word of maximal length.

Applying the switchi(¢;) = (Kjr,fj_) then the new Lyndon factorization gives:
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Theorem:Strong condition to characterize an insertable pixel

Let W(C) = ¢7*...£2 and {; be a primitive Christoffel word of maximal length.
Applying the switchi(¢;) = (ﬁf,éj_) then the new Lyndon factorization gives:

© If (i>1or ;1 >()and (i <njor by <{):

N (z;i—l L | Vi S

Q@ If(i=1land ¢;_1 = KJ*) and (i < nj or Ligy <L)
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Sketch proof

The proof of this theorem relies on two points:

© Showing that 4—1 ¢ and £ ng_v—" are Christoffel words.

@ Proving the following inequalities: ¢;_; > EJ’-_lfj-r >0 KJ'-U_' > Uit
> The inequality in the middle by applying some Christoffel morphisms.
> If the last inequality is not correct, we have: ¢, < £ E;jf, <41 < 4. Then
£jy1 is a Christoffel word in the angle of £;7,¢; and can’t be equal to ¢;, in this
case it has to be longer than ¢;, contradiction to the main condition that ¢; is
the longest Christoffel.
» The first inequality is treated in a symmetric way as the previous one.
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Remarks and Conclusion

@ The propagation doesn't exceed the next Christoffel word 07 or the

Ny j+1
. nj—
previous one {7 ;"
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Remarks and Conclusion

@ The propagation doesn't exceed the next Christoffel word Effll or the
previous one E;fll.

© We are able to reduce this condition from a global maximality to a local one,
where it is enough to split the Christoffel word ¢; that respects:
14| > max (| i1 |, Ljsa])-
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© We are able to reduce this condition from a global maximality to a local one,
where it is enough to split the Christoffel word ¢; that respects:
14| > max (| i1 |, Ljsa])-

© The furthest pixels of all the primitive Christoffel words of maximal length
correspond to insertable pixels.
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Remarks and Conclusion

@ The propagation doesn't exceed the next Christoffel word Effll or the

. gnjfl
previous one -1 -

© We are able to reduce this condition from a global maximality to a local one,

where it is enough to split the Christoffel word ¢; that respects:

[ €| > max (| 611, |£jt1])

© The furthest pixels of all the primitive Christoffel words of maximal length

correspond to insertable pixels.
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Some Perspectives

© The algorithmic details and optimization of the process.
© The choice of the optimal heuristic for deflating a digital convex set.

© Apply these algorithms on non-convex shapes by studying the locally convex
boundary using combinatorics on words.
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THANK YOU
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